Skip to content
Main -> Dating -> Radiometric dating - Wikipedia
  • 05.01.2019
  • by Shale
  • 2 comments

Radiometric dating - Wikipedia

Radiometric dating / Carbon dating

This page has been archived and is no longer updated. Despite seeming like a relatively stable place, the Earth's surface has changed dramatically over the past 4. Mountains have been built and eroded, continents and oceans have moved great distances, and the Earth has fluctuated from being extremely cold and almost completely covered with ice to being very warm and ice-free. These changes typically occur so slowly that they are barely detectable over the span of a human life, yet even at this instant, the Earth's surface is moving and changing. As these changes have occurred, organisms have evolved, and remnants of some have been preserved as fossils. A fossil can be studied to determine what kind of organism it represents, how the organism lived, and how it was preserved. However, by itself a fossil has little meaning unless it is placed within some context.

By dating these surrounding layers, they can figure out the youngest and oldest that the fossil might be; this is known as "bracketing" the age of the sedimentary layer in which the fossils occur.

Search Glossary Home. Support this project. Read more about how radiometric dating factored into the history of evolutionary thought. Teach your students about absolute dating: Determining age of rocks and fossilsa classroom activity for grades There are over forty such techniques, each using a different radioactive element or a different way of measuring them. It has become increasingly clear that these radiometric dating techniques agree with each other and as a whole, present a coherent picture in which the Earth was created a very long time ago.

Further evidence comes from the complete agreement between radiometric dates and other dating methods such as counting tree rings or glacier ice core layers. Many Christians have been led to distrust radiometric dating and are completely unaware of the great number of laboratory measurements that have shown these methods to be consistent. Many are also unaware that Bible-believing Christians are among those actively involved in radiometric dating. This paper describes in relatively simple terms how a number of the dating techniques work, how accurately the half-lives of the radioactive elements and the rock dates themselves are known, and how dates are checked with one another.

In the process the paper refutes a number of misconceptions prevalent among Christians today. This paper is available on the web via the American Scientific Affiliation and related sites to promote greater understanding and wisdom on this issue, particularly within the Christian community.

Doubters Still Try Apparent Age? Arguments over the age of the Earth have sometimes been divisive for people who regard the Bible as God's word. Even though the Earth's age is never mentioned in the Bible, it is an issue because those who take a strictly literal view of the early chapters of Genesis can calculate an approximate date for the creation by adding up the life-spans of the people mentioned in the genealogies.

Assuming a strictly literal interpretation of the week of creation, even if some of the generations were left out of the genealogies, the Earth would be less than ten thousand years old. Radiometric dating techniques indicate that the Earth is thousands of times older than that--approximately four and a half billion years old. Many Christians accept this and interpret the Genesis account in less scientifically literal ways. However, some Christians suggest that the geologic dating techniques are unreliable, that they are wrongly interpreted, or that they are confusing at best.

Unfortunately, much of the literature available to Christians has been either inaccurate or difficult to understand, so that confusion over dating techniques continues.

The next few pages cover a broad overview of radiometric dating techniques, show a few examples, and discuss the degree to which the various dating systems agree with each other. The goal is to promote greater understanding on this issue, particularly for the Christian community. Many people have been led to be skeptical of dating without knowing much about it.

For example, most people don't realize that carbon dating is only rarely used on rocks. God has called us to be "wise as serpents" Matt.

In spite of this, differences still occur within the church. A disagreement over the age of the Earth is relatively minor in the whole scope of Christianity; it is more important to agree on the Rock of Ages than on the age of rocks. But because God has also called us to wisdom, this issue is worthy of study. Rocks are made up of many individual crystals, and each crystal is usually made up of at least several different chemical elements such as iron, magnesium, silicon, etc.

Most of the elements in nature are stable and do not change. However, some elements are not completely stable in their natural state. Some of the atoms eventually change from one element to another by a process called radioactive decay. If there are a lot of atoms of the original element, called the parent element, the atoms decay to another element, called the daughter element, at a predictable rate.

The passage of time can be charted by the reduction in the number of parent atoms, and the increase in the number of daughter atoms. Radiometric dating can be compared to an hourglass. When the glass is turned over, sand runs from the top to the bottom. Radioactive atoms are like individual grains of sand--radioactive decays are like the falling of grains from the top to the bottom of the glass.

You cannot predict exactly when any one particular grain will get to the bottom, but you can predict from one time to the next how long the whole pile of sand takes to fall. Once all of the sand has fallen out of the top, the hourglass will no longer keep time unless it is turned over again. Similarly, when all the atoms of the radioactive element are gone, the rock will no longer keep time unless it receives a new batch of radioactive atoms.

Figure 1. The rate of loss of sand from from the top of an hourglass compared to exponential type of decay of radioactive elements. In exponential decay the amount of material decreases by half during each half-life. After two half-lives one-fourth remains, after three half-lives, one-eighth, etc. Unlike the hourglass, where the amount of sand falling is constant right up until the end, the number of decays from a fixed number of radioactive atoms decreases as there are fewer atoms left to decay see Figure 1.

If it takes a certain length of time for half of the atoms to decay, it will take the same amount of time for half of the remaining atoms, or a fourth of the original total, to decay. In the next interval, with only a fourth remaining, only one eighth of the original total will decay. By the time ten of these intervals, or half-lives, has passed, less than one thousandth of the original number of radioactive atoms is left.

The equation for the fraction of parent atoms left is very simple. The type of equation is exponential, and is related to equations describing other well-known phenomena such as population growth. No deviations have yet been found from this equation for radioactive decay.

Also unlike the hourglass, there is no way to change the rate at which radioactive atoms decay in rocks. If you shake the hourglass, twirl it, or put it in a rapidly accelerating vehicle, the time it takes the sand to fall will change. But the radioactive atoms used in dating techniques have been subjected to heat, cold, pressure, vacuum, acceleration, and strong chemical reactions to the extent that would be experienced by rocks or magma in the mantle, crust, or surface of the Earth or other planets without any significant change in their decay rate.

In only a couple of special cases have any decay rates been observed to vary, and none of these special cases apply to the dating of rocks as discussed here. These exceptions are discussed later. An hourglass will tell time correctly only if it is completely sealed. If it has a hole allowing the sand grains to escape out the side instead of going through the neck, it will give the wrong time interval.

Similarly, a rock that is to be dated must be sealed against loss or addition of either the radioactive daughter or parent. If it has lost some of the daughter element, it will give an inaccurately young age. As will be discussed later, most dating techniques have very good ways of telling if such a loss has occurred, in which case the date is thrown out and so is the rock!

An hourglass measures how much time has passed since it was turned over. Actually it tells when a specific amount of time, e. Radiometric dating of rocks also tells how much time has passed since some event occurred. For igneous rocks the event is usually its cooling and hardening from magma or lava. For some other materials, the event is the end of a metamorphic heating event in which the rock gets baked underground at generally over a thousand degrees Fahrenheitthe uncovering of a surface by the scraping action of a glacier, the chipping of a meteorite off of an asteroid, or the length of time a plant or animal has been dead.

There are now well over forty different radiometric dating techniques, each based on a different radioactive isotope. The term isotope subdivides elements into groups of atoms that have the same atomic weight. For example carbon has isotopes of weight 12, 13, and 14 times the mass of a nucleon, referred to as carbon, carbon, or carbon abbreviated as 12 C, 13 C, 14 C. It is only the carbon isotope that is radioactive.

How Carbon Dating Works

This will be discussed further in a later section. A partial list of the parent and daughter isotopes and the decay half-lives is given in Table I. Notice the large range in the half-lives. Isotopes with long half-lives decay very slowly, and so are useful for dating. Table 1. Some Naturally Occurring Radioactive Isotopes and their half-lives. Parent Product. Daughter Half-Life. Years Samarium Neodymium billion Rubidium Strontium Isotopes with shorter half-lives cannot date very ancient events because all of the atoms of the parent isotope would have already decayed away, like an hourglass left sitting with all the sand at the bottom.

Isotopes with relatively short half-lives are useful for dating correspondingly shorter intervals, and can usually do so with greater accuracy, just as you would use a stopwatch rather than a grandfather clock to time a meter dash.

On the other hand, you would use a calendar, not a clock, to record time intervals of several weeks or more. The half-lives have all been measured directly either by using a radiation detector to count the number of atoms decaying in a given amount of time from a known amount of the parent material, or by measuring the ratio of daughter to parent atoms in a sample that originally consisted completely of parent atoms.

Work on radiometric dating first started shortly after the turn of the 20th century, but progress was relatively slow before the late. However, by now we have had over fifty years to measure and re-measure the half-lives for many of the dating techniques. Very precise counting of the decay events or the daughter atoms can be done, so while the number of, say, rhenium atoms decaying in 50 years is a very small fraction of the total, the resulting osmium atoms can be very precisely counted.

For example, recall that only one gram of material contains over 10 21 1 with 21 zeros behind atoms. Even if only one trillionth of the atoms decay in one year, this is still millions of decays, each of which can be counted by a radiation detector!

The uncertainties on the half-lives given in the table are all very small. There is no evidence of any of the half-lives changing over time. In fact, as discussed below, they have been observed to not change at all over hundreds of thousands of years. Examples of Dating Methods for Igneous Rocks.

Now let's look at how the actual dating methods work. Igneous rocks are good candidates for dating. Recall that for igneous rocks the event being dated is when the rock was formed from magma or lava. When the molten material cools and hardens, the atoms are no longer free to move about. Daughter atoms that result from radioactive decays occurring after the rock cools are frozen in the place where they were made within the rock.

These atoms are like the sand grains accumulating in the bottom of the hourglass. Determining the age of a rock is a two-step process.

First one needs to measure the number of daughter atoms and the number of remaining parent atoms and calculate the ratio between them. Then the half-life is used to calculate the time it took to produce that ratio of parent atoms to daughter atoms. However, there is one complication. One cannot always assume that there were no daughter atoms to begin with.

It turns out that there are some cases where one can make that assumption quite reliably. But in most cases the initial amount of the daughter product must be accurately determined. Most of the time one can use the different amounts of parent and daughter present in different minerals within the rock to tell how much daughter was originally present.

Each dating mechanism deals with this problem in its own way. Some types of dating work better in some rocks; others are better in other rocks, depending on the rock composition and its age.

Let's examine some of the different dating mechanisms now. Potassium is an abundant element in the Earth's crust. One isotope, potassium, is radioactive and decays to two different daughter products, calcium and argon, by two different decay methods. This is not a problem because the production ratio of these two daughter products is precisely known, and is always constant: It is possible to date some rocks by the potassium-calcium method, but this is not often done because it is hard to determine how much calcium was initially present.

Argon, on the other hand, is a gas. Whenever rock is melted to become magma or lava, the argon tends to escape. Once the molten material hardens, it begins to trap the new argon produced since the hardening took place. In this way the potassium-argon clock is clearly reset when an igneous rock is formed. In its simplest form, the geologist simply needs to measure the relative amounts of potassium and argon to date the rock. The age is given by a relatively simple equation:.

However, in reality there is often a small amount of argon remaining in a rock when it hardens.

This is usually trapped in the form of very tiny air bubbles in the rock. One percent of the air we breathe is argon. Any extra argon from air bubbles may need to be taken into account if it is significant relative to the amount of radiogenic argon that is, argon produced by radioactive decays. This would most likely be the case in either young rocks that have not had time to produce much radiogenic argon, or in rocks that are low in the parent potassium.

One must have a way to determine how much air-argon is in the rock. This is rather easily done because air-argon has a couple of other isotopes, the most abundant of which is argon The ratio of argon to argon in air is well known, at Thus, if one measures argon as well as argon, one can calculate and subtract off the air-argon to get an accurate age.

One of the best ways of showing that an age-date is correct is to confirm it with one or more different dating. Although potassium-argon is one of the simplest dating methods, there are still some cases where it does not agree with other methods. When this does happen, it is usually because the gas within bubbles in the rock is from deep underground rather than from the air.

This gas can have a higher concentration of argon escaping from the melting of older rocks. This is called parentless argon because its parent potassium is not in the rock being dated, and is also not from the air.

In these slightly unusual cases, the date given by the normal potassium-argon method is too old. However, scientists in the mids came up with a way around this problem, the argon-argon method, discussed in the next section. Even though it has been around for nearly half a century, the argon-argon method is seldom discussed by groups critical of dating methods.

This method uses exactly the same parent and daughter isotopes as the potassium-argon method. In effect, it is a different way of telling time from the same clock.

Instead of simply comparing the total potassium with the non-air argon in the rock, this method has a way of telling exactly what and how much argon is directly related to the potassium in the rock. In the argon-argon method the rock is placed near the center of a nuclear reactor for a period of hours. A nuclear reactor emits a very large number of neutrons, which are capable of changing a small amount of the potassium into argon Argon is not found in nature because it has only a year half-life.

This half-life doesn't affect the argon-argon dating method as long as the measurements are made within about five years of the neutron dose. The rock is then heated in a furnace to release both the argon and the argon representing the potassium for analysis.

The heating is done at incrementally higher temperatures and at each step the ratio of argon to argon is measured. If the argon is from decay of potassium within the rock, it will come out at the same temperatures as the potassium-derived argon and in a constant proportion. On the other hand, if there is some excess argon in the rock it will cause a different ratio of argon to argon for some or many of the heating steps, so the different heating steps will not agree with each other.

Figure 2 is an example of a good argon-argon date. The fact that this plot is flat shows that essentially all of the argon is from decay of potassium within the rock. The potassium content of the sample is found by multiplying the argon by a factor based on the neutron exposure in the reactor. When this is done, the plateau in the figure represents an age date based on the decay of potassium to argon There are occasions when the argon-argon dating method does not give an age even if there is sufficient potassium in the sample and the rock was old enough to date.

This most often occurs if the rock experienced a high temperature usually a thousand degrees Fahrenheit or more at some point since its formation. If that occurs, some of the argon gas moves around, and the analysis does not give a smooth plateau across the extraction temperature steps.

An example of an argon-argon analysis that did not yield an age date is shown in Figure 3. Notice that there is no good plateau in this plot.

In some instances there will actually be two plateaus, one representing the formation age, and another representing the time at which the heating episode occurred. But in most cases where the system has been disturbed, there simply is no date given. The important point to note is that, rather than giving wrong age dates, this method simply does not give a date if the system has been disturbed. This is also true of a number of other igneous rock dating methods, as we will describe below.

Figure 3. In nearly all of the dating methods, except potassium-argon and the associated argon-argon method, there is always some amount of the daughter product already in the rock when it cools.

Radiometric Dating. Radiometric measurements of time. Since the early twentieth century scientists have found ways to accurately measure geological time. Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive. Radiometric dating is used to estimate the age of rocks and other objects based on the fixed decay rate of radioactive isotopes. Learn about half-life and how it is .

Using these methods is a little like trying to tell time from an hourglass that was turned over before all of the sand had fallen to the bottom. One can think of ways to correct for this in an hourglass: One could make a mark on the outside of the glass where the sand level started from and then repeat the interval with a stopwatch in the other hand to calibrate it. Or if one is clever she or he could examine the hourglass' shape and determine what fraction of all the sand was at the top to start with.

By knowing how long it takes all of the sand to fall, one could determine how long the time interval was. Similarly, there are good ways to tell quite precisely how much of the daughter product was already in the rock when it cooled and hardened.

Radiometric dating. Geologists use radiometric dating to estimate how long ago rocks formed, and to infer the ages of fossils contained within those rocks. Principles of Radiometric Dating. Radioactive decay is described in terms of the probability that a constituent particle of the nucleus of an atom. Radiometric dating--the process of determining the age of rocks from the decay of their radioactive elements--has been in widespread use for over half a century.

Figure 4 is an important type of plot used in rubidium-strontium dating. Figure 5. This works because if there were no rubidium in the sample, the strontium composition would not change.

The slope of the line is used to determine the age of the sample.

As the rock starts to age, rubidium gets converted to strontium. The amount of strontium added to each mineral is proportional to the amount of rubidium present. The solid line drawn through the samples will thus progressively rotate from the horizontal to steeper and steeper slopes.

From that we can determine the original daughter strontium in each mineral, which is just what we need to know to determine the correct age. It also turns out that the slope of the line is proportional to the age of the rock. The older the rock, the steeper the line will be. If the slope of the line is m and the half-life is hthe age t in years is given by the equation. For a system with a very long half-life like rubidium-strontium, the actual numerical value of the slope will always be quite small.

To give an example for the above equation, if the slope of a line in a plot similar to Fig. Several things can on rare occasions cause problems for the rubidium-strontium dating method. One possible source of problems is if a rock contains some minerals that are older than the main part of the rock.

This can happen when magma inside the Earth picks up unmelted minerals from the surrounding rock as the magma moves through a magma chamber. Usually a good geologist can distinguish these "xenoliths" from the younger minerals around them. If he or she does happen to use them for dating the rock, the points represented by these minerals will lie off the line made by the rest of the points.

Radioactive Dating. The technique of comparing the abundance ratio of a radioactive isotope to a reference isotope to determine the age of a material is called. Using relative and radiometric dating methods, geologists are able to answer the question: how old is this fossil?. Radiometric dating methods. In geology, an absolute age is a quantitative measurement of how old something is, or how long ago it occurred, usually expressed.

Another difficulty can arise if a rock has undergone metamorphism, that is, if the rock got very hot, but not hot enough to completely re-melt the rock. In these cases, the dates look confused, and do not lie along a line.

Radiometric dating dating

Some of the minerals may have completely melted, while others did not melt at all, so some minerals try to give the igneous age while other minerals try to give the metamorphic age. In these cases there will not be a straight line, and no date is determined. In a few very rare instances the rubidium-strontium method has given straight lines that give wrong ages. This can happen when the rock being dated was formed from magma that was not well mixed, and which had two distinct batches of rubidium and strontium.

One magma batch had rubidium and strontium compositions near the upper end of a line such as in Fig. In this case, the. This is called a two-component mixing line. It is a very rare occurrence in these dating mechanisms, but at least thirty cases have been documented among the tens of thousands of rubidium-strontium dates made. The agreement of several dating methods is the best fail-safe way of dating rocks.

All of these methods work very similarly to the rubidium-strontium method. They all use three-isotope diagrams similar to Figure 4 to determine the age.

The samarium-neodymium method is the most-often used of these three. It uses the decay of samarium to neodymium, which has a half-life of billion years. The ratio of the daughter isotope, neodymium, to another neodymium isotope, neodymium, is plotted against the ratio of the parent, samarium, to neodymium If different minerals from the same rock plot along a line, the slope is determined, and the age is given by the same equation as above.

The samarium-neodymium method may be preferred for rocks that have very little potassium and rubidium, for which the potassium-argon, argon-argon, and rubidium-strontium methods might be difficult.

Radiometric Dating: Methods, Uses & the Significance of Half-Life

The samarium-neodymium method has also been shown to be more resistant to being disturbed or re-set by metamorphic heating events, so for some metamorphosed rocks the samarium-neodymium method is preferred. For a rock of the same age, the slope on the neodymium-samarium plots will be less than on a rubidium-strontium plot because the half-life is longer.

However, these isotope ratios are usually measured to extreme accuracy--several parts in ten thousand--so accurate dates can be obtained even for ages less than one fiftieth of a half-life, and with correspondingly small slopes. The lutetium-hafnium method uses the 38 billion year half-life of lutetium decaying to hafnium This dating system is similar in many ways to samarium-neodymium, as the elements tend to be concentrated in the same types of minerals.

Since samarium-neodymium dating is somewhat easier, the lutetium-hafnium method is used less often. The rhenium-osmium method takes advantage of the fact that the osmium concentration in most rocks and minerals is very low, so a small amount of the parent rhenium can produce a significant change in the osmium isotope ratio.

The half-life for this radioactive decay is 42 billion years. The non-radiogenic stable isotopes, osmium orare used as the denominator in the ratios on the three-isotope plots. This method has been useful for dating iron meteorites, and is now enjoying greater use for dating Earth rocks due to development of easier rhenium and osmium isotope measurement techniques. Uranium-Lead and related techniques. The uranium-lead method is the longest-used dating method.

It was first used inabout a century ago. The uranium-lead system is more complicated than other parent-daughter systems; it is actually several dating methods put together.

Natural uranium consists primarily of two isotopes, U and U, and these isotopes decay with different half-lives to produce lead and lead, respectively. In addition, lead is produced by thorium Only one isotope of lead, lead, is not radiogenic. The uranium-lead system has an interesting complication: none of the lead isotopes is produced directly from the uranium and thorium. Each decays through a series of relatively short-lived radioactive elements that each decay to a lighter element, finally ending up at lead.

Since these half-lives are so short compared to U, U, and thorium, they generally do not affect the overall dating scheme. The result is that one can obtain three independent estimates of the age of a rock by measuring the lead isotopes and their parent isotopes. Long-term dating based on the U, U, and thorium will be discussed briefly here; dating based on some of the shorter-lived intermediate isotopes is discussed later.

The uranium-lead system in its simpler forms, using U, U, and thorium, has proved to be less reliable than many of the other dating systems. This is because both uranium and lead are less easily retained in many of the minerals in which they are found.

Yet the fact that there are three dating systems all in one allows scientists to easily determine whether the system has been disturbed or not.

Using slightly more complicated mathematics, different combinations of the lead isotopes and parent isotopes can be plotted in such a way as to. One of these techniques is called the lead-lead technique because it determines the ages from the lead isotopes alone.

Some of these techniques allow scientists to chart at what points in time metamorphic heating events have occurred, which is also of significant interest to geologists.

The Age of the Earth. We now turn our attention to what the dating systems tell us about the age of the Earth. The most obvious constraint is the age of the oldest rocks. These have been dated at up to about four billion years. But actually only a very small portion of the Earth 's rocks are that old.

From satellite data and other measurements we know that the Earth's surface is constantly rearranging itself little by little as Earth quakes occur. Such rearranging cannot occur without some of the Earth's surface disappearing under other parts of the Earth's surface, re-melting some of the rock. So it appears that none of the rocks have survived from the creation of the Earth without undergoing remelting, metamorphism, or erosion, and all we can say--from this line of evidence--is that the Earth appears to be at least as old as the four billion year old rocks.

When scientists began systematically dating meteorites they learned a very interesting thing: nearly all of the meteorites had practically identical ages, at 4. These meteorites are chips off the asteroids. When the asteroids were formed in space, they cooled relatively quickly some of them may never have gotten very warmso all of their rocks were formed within a few million years.

The asteroids' rocks have not been remelted ever since, so the ages have generally not been disturbed. Meteorites that show evidence of being from the largest asteroids have slightly younger ages. The moon is larger than the largest asteroid.

Most of the rocks we have from the moon do not exceed 4. The samples thought to be the oldest are highly pulverized and difficult to date, though there are a few dates extending all the way to 4. Most scientists think that all the bodies in the solar system were created at about the same time. Evidence from the uranium, thorium, and lead isotopes links the Earth's age with that of the meteorites.

This would make the Earth 4. Figure 6. There is another way to determine the age of the Earth. If we see an hourglass whose sand has run out, we know that it was turned over longer ago than the time interval it measures.

Similarly, if we find that a radioactive parent was once abundant but has since run out, we know that it too was set longer ago than the time interval it measures.

There are in fact many, many more parent isotopes than those listed in Table 1. However, most of them are no longer found naturally on Earth--they have run out. Their half-lives range down to times shorter than we can measure. Every single element has radioisotopes that no longer exist on Earth! Many people are familiar with a chart of the elements Fig. Nuclear chemists and geologists use a different kind of figure to show all of the isotopes. It is called a chart of the nuclides.

Figure 7 shows a portion of this chart. It is basically a plot of the number of protons vs. Recall that an element is defined by how many protons it has. Each element can have a number of different isotopes, that is.

Figure 7. A portion of the chart of the nuclides showing isotopes of argon and potassium, and some of the isotopes of chlorine and calcium.

Isotopes shown in dark green are found in rocks. Isotopes shown in light green have short half-lives, and thus are no longer found in rocks. Short-lived isotopes can be made for nearly every element in the periodic table, but unless replenished by cosmic rays or other radioactive isotopes, they no longer exist in nature.

So each element occupies a single row, while different isotopes of that element lie in different columns. For potassium found in nature, the total neutrons plus protons can add up to 39, 40, or Potassium and are stable, but potassium is unstable, giving us the dating methods discussed above.

Besides the stable potassium isotopes and potassium, it is possible to produce a number of other potassium isotopes, but, as shown by the half-lives of these isotopes off to the side, they decay away. Now, if we look at which radioisotopes still exist and which do not, we find a very interesting fact. Nearly all isotopes with half-lives shorter than half a billion years are no longer in existence. For example, although most rocks contain significant amounts of Calcium, the isotope Calcium half-lifeyears does not exist just as potassium, etc.

Just about the only radioisotopes found naturally are those with very long half-lives of close to a billion years or longer, as illustrated in the time line in Fig. The only isotopes present with shorter half-lives are those that have a source constantly replenishing them.

Chlorine shown in Fig. In a number of cases there is. Some of these isotopes and their half-lives are given in Table II.

This is conclusive evidence that the solar system was created longer ago than the span of these half lives! On the other hand, the existence in nature of parent isotopes with half lives around a billion years and longer is strong evidence that the Earth was created not longer ago than several billion years.

The Earth is old enough that radioactive isotopes with half-lives less than half a billion years decayed away, but not so old that radioactive isotopes with longer half-lives are gone. This is just like finding hourglasses measuring a long time interval still going, while hourglasses measuring shorter intervals have run out. Examples of questions on this material that could be asked on an exam. Radiometric Dating. Prior to the best and most accepted age of the Earth was that proposed by Lord Kelvin based on the amount of time necessary for the Earth to cool to its present temperature from a completely liquid state.

Principles of Radiometric Dating Radioactive decay is described in terms of the probability that a constituent particle of the nucleus of an atom will escape through the potential Energy barrier which bonds them to the nucleus. Thus, if we start out with 1 gram of the parent isotope, after the passage of 1 half-life there will be 0. Some examples of isotope systems used to date geologic materials.

If we divide equation 4 through by the amount of 86 Sr, then we get:. Note also that equation 5 has the form of a linear equation, i. How can we use this? In nature, however, each mineral in the rock is likely to have a different amount of 87 Rb. Thus, once the rock has cooled to the point where diffusion of elements does not occur, the 87 Rb in each mineral will decay to 87 Sr, and each mineral will have a different 87 Rb and 87 Sr after passage of time.

The discordia is often interpreted by extrapolating both ends to intersect the Concordia. Pb leakage is the most likely cause of discordant dates, since Pb will be occupying a site in the crystal that has suffered radiation damage as a result of U decay. U would have been stable in the crystallographic site, but the site is now occupied by by Pb.

An event like metamorphism could heat the crystal to the point where Pb will become mobile. Another possible scenario involves U leakage, again possibly as a result of a metamorphic event. U leakage would cause discordant points to plot above the cocordia.

The Age of the Earth A minimum age of the Earth can be obtained from the oldest known rocks on the Earth. So far, the oldest rock found is a tonalitic Gneiss metamorphic rock rock from the Northwest Territories, Canada, with an age of 3. This gives us only a minimum age of the Earth.

Is it likely that we will find a rock formed on the Earth that will give us the true age of the Earth? From the Pb-Pb isochron equation 11 we can make some arguments about meteorites. First, it appears that meteorites have come from somewhere in the solar system, and thus may have been formed at the same time the solar system and thus the Earth formed.

If all of the meteorites formed at the same time and have been closed to U and Pb since their formation, then we can use the Pb-Pb isochron to date all meteorites. First, however, we need to know the initial ratios of the Pb isotopes. We recognize two major types of meteorites: Fe- meteorites and stony or chondritic meteorites The Fe meteorites contain the mineral troilite FeS that has no U. Since the mineral troilite contains no U, all of the Pb present in the troilite is the Pb originally present, and none of it has been produced by U decay.

We can then determine the Pb ratios in other meteorites and see if they fall on a Pb-Pb isochron that passes through the initial ratios determined from troilite in Fe-meteorites. The slope of this isochron, known as the Geochron, gives an age of 4. K-Ar Dating 40 K is the radioactive isotope of K, and makes up 0.

Thus the ratio of 14 C to 14 N in the Earth's atmosphere is constant. Living organisms continually exchange Carbon and Nitrogen with the atmosphere by breathing, feeding, and photosynthesis. When an organism dies, the 14 C decays back to 14 N, with a half-life of 5, years.

Measuring the amount of 14 C in this dead material thus enables the determination of the time elapsed since the organism died. Radiocarbon dates are obtained from such things as bones, teeth, charcoal, fossilized wood, and shells. Because of the short half-life of 14 C, it is only used to date materials younger than about 70, years.

Other Uses of Isotopes Radioactivity is an important heat source in the Earth. Elements like K, U, Th, and Rb occur in quantities large enough to release a substantial amount of heat through radioactive decay. Thus radioactive isotopes have potential as fuel for such processes as mountain building, convection in the mantle to drive plate tectonics, and convection in the core to produce the Earth's magnetic Field. Initial isotopic ratios are useful as geochemical tracers.

Next related articles:
  • Best dating site maui
  • Akigis

    2 thoughts on “Radiometric dating - Wikipedia

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top