Skip to content
Main -> Dating -> Dating Rocks and Fossils Using Geologic Methods . Learn Science at Scitable
  • 29.12.2018
  • by Fauhn
  • 3 comments

Dating Rocks and Fossils Using Geologic Methods . Learn Science at Scitable

Relative Dating - Example 1

This page has been archived and is no longer updated. Despite seeming like a relatively stable place, the Earth's surface has changed dramatically over the past 4. Mountains have been built and eroded, continents and oceans have moved great distances, and the Earth has fluctuated from being extremely cold and almost completely covered with ice to being very warm and ice-free. These changes typically occur so slowly that they are barely detectable over the span of a human life, yet even at this instant, the Earth's surface is moving and changing. As these changes have occurred, organisms have evolved, and remnants of some have been preserved as fossils. A fossil can be studied to determine what kind of organism it represents, how the organism lived, and how it was preserved.

The principle of superposition builds on the principle of original horizontality.

The principle of superposition states that in an undeformed sequence of sedimentary rocks, each layer of rock is older than the one above it and younger than the one below it Figures 1 and 2. Accordingly, the oldest rocks in a sequence are at the bottom and the youngest rocks are at the top. Sometimes sedimentary rocks are disturbed by events, such as fault movements, that cut across layers after the rocks were deposited.

This is the principle of cross-cutting relationships. The principle states that any geologic features that cut across strata must have formed after the rocks they cut through Figures 2 and 3. According to the principle of original horizontality, these strata must have been deposited horizontally and then titled vertically after they were deposited. In addition to being tilted horizontally, the layers have been faulted dashed lines on figure.

Applying the principle of cross-cutting relationships, this fault that offsets the layers of rock must have occurred after the strata were deposited.

The principles of original horizontality, superposition, and cross-cutting relationships allow events to be ordered at a single location. However, they do not reveal the relative ages of rocks preserved in two different areas. In this case, fossils can be useful tools for understanding the relative ages of rocks. Each fossil species reflects a unique period of time in Earth's history.

The principle of faunal succession states that different fossil species always appear and disappear in the same order, and that once a fossil species goes extinct, it disappears and cannot reappear in younger rocks Figure 4.

Fossils occur for a distinct, limited interval of time. In the figure, that distinct age range for each fossil species is indicated by the grey arrows underlying the picture of each fossil. The position of the lower arrowhead indicates the first occurrence of the fossil and the upper arrowhead indicates its last occurrence when it went extinct. Using the overlapping age ranges of multiple fossils, it is possible to determine the relative age of the fossil species i.

For example, there is a specific interval of time, indicated by the red box, during which both the blue ammonite and orange ammonite co-existed.

If both the blue and orange ammonites are found together, the rock must have been deposited during the time interval indicated by the red box, which represents the time during which both fossil species co-existed. In this figure, the unknown fossil, a red sponge, occurs with five other fossils in fossil assemblage B. Fossil assemblage B includes the index fossils the orange ammonite and the blue ammonite, meaning that assemblage B must have been deposited during the interval of time indicated by the red box.

Because, the unknown fossil, the red sponge, was found with the fossils in fossil assemblage B it also must have existed during the interval of time indicated by the red box. Fossil species that are used to distinguish one layer from another are called index fossils.

Index fossils occur for a limited interval of time. Usually index fossils are fossil organisms that are common, easily identified, and found across a large area.

Because they are often rare, primate fossils are not usually good index fossils. Organisms like pigs and rodents are more typically used because they are more common, widely distributed, and evolve relatively rapidly.

Using the principle of faunal succession, if an unidentified fossil is found in the same rock layer as an index fossil, the two species must have existed during the same period of time Figure 4. If the same index fossil is found in different areas, the strata in each area were likely deposited at the same time.

Thus, the principle of faunal succession makes it possible to determine the relative age of unknown fossils and correlate fossil sites across large discontinuous areas. All elements contain protons and neutronslocated in the atomic nucleusand electrons that orbit around the nucleus Figure 5a.

In each element, the number of protons is constant while the number of neutrons and electrons can vary. Atoms of the same element but with different number of neutrons are called isotopes of that element. Each isotope is identified by its atomic masswhich is the number of protons plus neutrons.

Nicolaus Steno. () propsed three principles to order samples in geological time: superposition, original horizontality, lateral continuity. relative dating. Old world monkeys are the most successful primates in terms of number of species. Relative and absolute techniques used for dating fossils Relative dating. The first is relative dating, which simply places a fossil in chronological order differences in the relative sizes of brain components in apes and humans.

For example, the element carbon has six protons, but can have six, seven, or eight neutrons. Thus, carbon has three isotopes: carbon 12 12 Ccarbon 13 13 Cand carbon 14 14 C Figure 5a. C 12 and C 13 are stable. The atomic nucleus in C 14 is unstable making the isotope radioactive.

Because it is unstable, occasionally C 14 undergoes radioactive decay to become stable nitrogen N The amount of time it takes for half of the parent isotopes to decay into daughter isotopes is known as the half-life of the radioactive isotope. Most isotopes found on Earth are generally stable and do not change. However some isotopes, like 14 C, have an unstable nucleus and are radioactive. This means that occasionally the unstable isotope will change its number of protons, neutrons, or both.

This change is called radioactive decay. For example, unstable 14 C transforms to stable nitrogen 14 N. The atomic nucleus that decays is called the parent isotope. The product of the decay is called the daughter isotope. In the example, 14 C is the parent and 14 N is the daughter.

Some minerals in rocks and organic matter e. The abundances of parent and daughter isotopes in a sample can be measured and used to determine their age. This method is known as radiometric dating. Some commonly used dating methods are summarized in Table 1.

The rate of decay for many radioactive isotopes has been measured and does not change over time. Thus, each radioactive isotope has been decaying at the same rate since it was formed, ticking along regularly like a clock.

Relative dating

For example, when potassium is incorporated into a mineral that forms when lava cools, there is no argon from previous decay argon, a gas, escapes into the atmosphere while the lava is still molten. When that mineral forms and the rock cools enough that argon can no longer escape, the "radiometric clock" starts. Over time, the radioactive isotope of potassium decays slowly into stable argon, which accumulates in the mineral. The amount of time that it takes for half of the parent isotope to decay into daughter isotopes is called the half-life of an isotope Figure 5b.

When the quantities of the parent and daughter isotopes are equal, one half-life has occurred. If the half life of an isotope is known, the abundance of the parent and daughter isotopes can be measured and the amount of time that has elapsed since the "radiometric clock" started can be calculated. For example, if the measured abundance of 14 C and 14 N in a bone are equal, one half-life has passed and the bone is 5, years old an amount equal to the half-life of 14 C.

If there is three times less 14 C than 14 N in the bone, two half lives have passed and the sample is 11, years old. However, if the bone is 70, years or older the amount of 14 C left in the bone will be too small to measure accurately. Thus, radiocarbon dating is only useful for measuring things that were formed in the relatively recent geologic past.

Luckily, there are methods, such as the commonly used potassium-argon K-Ar methodthat allows dating of materials that are beyond the limit of radiocarbon dating Table 1. Comparison of commonly used dating methods. Radiation, which is a byproduct of radioactive decay, causes electrons to dislodge from their normal position in atoms and become trapped in imperfections in the crystal structure of the material.

Dating methods like thermoluminescenceoptical stimulating luminescence and electron spin resonancemeasure the accumulation of electrons in these imperfections, or "traps," in the crystal structure of the material. If the amount of radiation to which an object is exposed remains constant, the amount of electrons trapped in the imperfections in the crystal structure of the material will be proportional to the age of the material.

These methods are applicable to materials that are up to aboutyears old. However, once rocks or fossils become much older than that, all of the "traps" in the crystal structures become full and no more electrons can accumulate, even if they are dislodged. The Earth is like a gigantic magnet.

It has a magnetic north and south pole and its magnetic field is everywhere Figure 6a. Just as the magnetic needle in a compass will point toward magnetic north, small magnetic minerals that occur naturally in rocks point toward magnetic north, approximately parallel to the Earth's magnetic field. Because of this, magnetic minerals in rocks are excellent recorders of the orientation, or polarityof the Earth's magnetic field.

Small magnetic grains in rocks will orient themselves to be parallel to the direction of the magnetic field pointing towards the north pole. Black bands indicate times of normal polarity and white bands indicate times of reversed polarity. Through geologic time, the polarity of the Earth's magnetic field has switched, causing reversals in polarity. The Earth's magnetic field is generated by electrical currents that are produced by convection in the Earth's core. During magnetic reversals, there are probably changes in convection in the Earth's core leading to changes in the magnetic field.

The Earth's magnetic field has reversed many times during its history. When the magnetic north pole is close to the geographic north pole as it is todayit is called normal polarity.

Reversed polarity is when the magnetic "north" is near the geographic south pole. Using radiometric dates and measurements of the ancient magnetic polarity in volcanic and sedimentary rocks termed paleomagnetismgeologists have been able to determine precisely when magnetic reversals occurred in the past.

Combined observations of this type have led to the development of the geomagnetic polarity time scale GPTS Figure 6b.

The GPTS is divided into periods of normal polarity and reversed polarity. Geologists can measure the paleomagnetism of rocks at a site to reveal its record of ancient magnetic reversals.

Every reversal looks the same in the rock record, so other lines of evidence are needed to correlate the site to the GPTS. Information such as index fossils or radiometric dates can be used to correlate a particular paleomagnetic reversal to a known reversal in the GPTS. Once one reversal has been related to the GPTS, the numerical age of the entire sequence can be determined. Using a variety of methods, geologists are able to determine the age of geological materials to answer the question: "how old is this fossil?

These methods use the principles of stratigraphy to place events recorded in rocks from oldest to youngest. Absolute dating methods determine how much time has passed since rocks formed by measuring the radioactive decay of isotopes or the effects of radiation on the crystal structure of minerals.

Paleomagnetism measures the ancient orientation of the Earth's magnetic field to help determine the age of rocks. Deino, A.

The law of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. This is because it is not possible for a younger layer to slip beneath a layer previously deposited. This principle allows sedimentary layers to be viewed as a form of vertical time line, a partial or complete record of the time elapsed from deposition of the lowest layer to deposition of the highest bed.

The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist at the same time period throughout the world, their presence or sometimes absence may be used to provide a relative age of the formations in which they are found.

Based on principles laid out by William Smith almost a hundred years before the publication of Charles Darwin 's theory of evolutionthe principles of succession were developed independently of evolutionary thought.

The age of skeletal material can be measured by how much change or Relative dating involves a consideration of materials in relation to other materials. Nonetheless, a range of such apes, Ankarapithecus from Turkey (10 Ma), There is a possible, but tentative, record of a fossil orangutan relative dating to the. Using relative and radiometric dating methods, geologists are able to answer the scientists know that living primates evolved from fossil primates and that this.

The principle becomes quite complex, however, given the uncertainties of fossilization, the localization of fossil types due to lateral changes in habitat facies change in sedimentary strataand that not all fossils may be found globally at the same time. The principle of lateral continuity states that layers of sediment initially extend laterally in all directions; in other words, they are laterally continuous.

As a result, rocks that are otherwise similar, but are now separated by a valley or other erosional feature, can be assumed to be originally continuous. Layers of sediment do not extend indefinitely; rather, the limits can be recognized and are controlled by the amount and type of sediment available and the size and shape of the sedimentary basin.

Other articles where Relative dating is discussed: geology: Historical geology and stratigraphy: expressed solely in terms of relative ages, in which the age of . Start studying APES Chapter 8 Vocab. Learn vocabulary, terms, and more with flashcards, games, and other study tools. Relative dating is the science of determining the relative order of past events without necessarily determining their absolute age (i.e. estimated age). In geology.

Sediment will continue to be transported to an area and it will eventually be deposited. However, the layer of that material will become thinner as the amount of material lessens away from the source.

Legend of Gigantopithecus ''The Giant Ape''

Often, coarser-grained material can no longer be transported to an area because the transporting medium has insufficient energy to carry it to that location.

In its place, the particles that settle from the transporting medium will be finer-grained, and there will be a lateral transition from coarser- to finer-grained material. The lateral variation in sediment within a stratum is known as sedimentary facies.

If sufficient sedimentary material is available, it will be deposited up to the limits of the sedimentary basin. Often, the sedimentary basin is within rocks that are very different from the sediments that are being deposited, in which the lateral limits of the sedimentary layer will be marked by an abrupt change in rock type.

Melt inclusions are small parcels or "blobs" of molten rock that are trapped within crystals that grow in the magmas that form igneous rocks. In many respects they are analogous to fluid inclusions. Melt inclusions are generally small most are less than micrometres across a micrometre is one thousandth of a millimeter, or about 0.

Nevertheless, they can provide an abundance of useful information. Using microscopic observations and a range of chemical microanalysis techniques geochemists and igneous petrologists can obtain a range of useful information from melt inclusions. Two of the most common uses of melt inclusions are to study the compositions of magmas present early in the history of specific magma systems.

This is because inclusions can act like "fossils" trapping and preserving these early melts before they are modified by later igneous processes. In addition, because they are trapped at high pressures many melt inclusions also provide important information about the contents of volatile elements such as H 2 O, CO 2S and Cl that drive explosive volcanic eruptions.

Sorby was the first to document microscopic melt inclusions in crystals. The study of melt inclusions has been driven more recently by the development of sophisticated chemical analysis techniques.

Scientists from the former Soviet Union lead the study of melt inclusions in the decades after World War II Sobolev and Kostyuk,and developed methods for heating melt inclusions under a microscope, so changes could be directly observed.

Although they are small, melt inclusions may contain a number of different constituents, including glass which represents magma that has been quenched by rapid coolingsmall crystals and a separate vapour-rich bubble.

Relative dating apes

They occur in most of the crystals found in igneous rocks and are common in the minerals quartzfeldsparolivine and pyroxene. The formation of melt inclusions appears to be a normal part of the crystallization of minerals within magmas, and they can be found in both volcanic and plutonic rocks. The law of included fragments is a method of relative dating in geology. Essentially, this law states that clasts in a rock are older than the rock itself. Another example is a derived fossilwhich is a fossil that has been eroded from an older bed and redeposited into a younger one.

This is a restatement of Charles Lyell 's original principle of inclusions and components from his to multi-volume Principles of Geologywhich states that, with sedimentary rocksif inclusions or clasts are found in a formationthen the inclusions must be older than the formation that contains them. These foreign bodies are picked up as magma or lava flowsand are incorporated, later to cool in the matrix.

As a result, xenoliths are older than the rock which contains them Relative dating is used to determine the order of events on Solar System objects other than Earth; for decades, planetary scientists have used it to decipher the development of bodies in the Solar Systemparticularly in the vast majority of cases for which we have no surface samples.

Many of the same principles are applied. For example, if a valley is formed inside an impact craterthe valley must be younger than the crater. Craters are very useful in relative dating; as a general rule, the younger a planetary surface is, the fewer craters it has. If long-term cratering rates are known to enough precision, crude absolute dates can be applied based on craters alone; however, cratering rates outside the Earth-Moon system are poorly known.

Relative dating methods in archaeology are similar to some of those applied in geology. The principles of typology can be compared to the biostratigraphic approach in geology. From Wikipedia, the free encyclopedia. Not to be confused with Incest. For relative dating of words and sound in languages, see Historical linguistics. Main article: Typology archaeology. Further information: Dating methodologies in archaeology.

Earth System History. New York: W. Freeman and Company.

Kegal

3 thoughts on “Dating Rocks and Fossils Using Geologic Methods . Learn Science at Scitable

  1. I consider, that you commit an error. I can prove it. Write to me in PM, we will communicate.

  2. I think, that you commit an error. I suggest it to discuss. Write to me in PM, we will talk.

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top